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We construct a convergent expansion for the Yukawa gas at small activity and 
inverse temperature fi < 4~/e 2. 

KEY WORDS: Statistical mechanics; cluster expansion; renormalization 
group. 

1. I N T R O D U C T I O N  

In this paper we study a convergent expansion for the pressure and the 
truncated correlation functions of the two-dimensional classical Yukawa 
gas at low activity 2 and inverse temperature f l<4rc/e  2 (the collapse 
threshold). 

The existence of the thermodynamic limit for the pressure, for any 2 
and f ie2< 4~, and for the correlation functions, for any 2 and f ie2< 16/7r, 
was proved in Refs. 1 3, together with the analyticity and exponential 
clustering of the correlation functions, for 2 small and f ie2< 47r. All these 
results were obtained using essentially Euclidean field theory techniques. 

Here we propose a purely algebraic approach, which allows to prove 
the analyticity of the pressure and of the correlation functions around 
2 = 0. As usual, also the exponential clustering could be easily derived from 
the expansion. 

The ideas used in this paper were developed in Ref. 4, where they have 
been applied to study the Yukawa gas in the collapse region 47c ~< fie 2 < 8~, 
and found recently an interesting application to the Coulomb gas with 

i Dip. di Matematica, 1 Univ. di Roma, Piazzale A. Moro, 2 Roma 1-00185. 
2 Research partially supported by Ministero della Pubblica Istruzione and CNR-GNFM. 

671 

0022-4715/85/1 I00 0671 $04.50/'0 (t) 1985 Plenum Publishing Corporation 



672 Benfat to 

fixed ultraviolet cutoff. (51 They are essentially a very natural application to 
these problems of the renormalization group techniques3 6) In fact the main 
idea is to do an expansion in each length scale separately and iteratively. 
This allows to carefully take into account the different strength of the 
interaction at different scales. 

Other "iterated Mayer expansions" of the type discussed in this work 
are present in the recent literature. (7 9) We profited by some technical tools 
developed in Refs. 7, 12, and 13. 

The algebraic approach of this paper can be extended to the Coulomb 
gas with fixed ultraviolet cutoff in the region f ie  2 > 87r where it is known (5) 
that the coefficients of the Mayer series are finite. Unfortunately, up to 
now, we were not able to prove the convergence of the expansion in this 
case. 

As regards the Yukawa gas in the collapse region 4~ ~< fie2< 8~, it is 
possible to show that all the coefficients of the Mayer series are finite, 
except the first M, where M is the largest even integer such that 
2 ( M -  1 ) - fle2M/47c <~ O. Another open problem, whose solution is strictly 
related to the solution of the previous one, is the convergence of the sum of 
the remaining terms of the Mayer series. 

2. THE M O D E L  

Let us consider a classical two-dimensional gas of particles of charges 
_ e  and activity 2 in a finite volume A, at inverse temperature fl, 
interacting via the potential 

C<-N(x-Y)=(-~n)2~dkeik(x-Y) l + k  2 72N+2+k j (2.1) 

where 7 is a scaling parameter greater than 1. As is well known, its grand 
canonical partition function can be written in the following way: 

Z~ = f P(dq~ ~N) e VNA (2.2) 

where P(dq) <~N) is the Gaussian measure with covariance C ~N and 

v N = 2  ~ fA dx : e ~ N :  (2.3) 
e = _ + l  

= (fle2) '/2 (2.4) 
�9 - ~ < N  - 2  ~<N . ~<N :e'~'P~ : = e (1/2)~ cx~ e ' ~  (2.5) 
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In the sequel we shall need the following standard definitions. If 
f~ ..... f,, are random variables and g denotes the expectation, the truncated 
expectation off1 ..... f ,  is defined by the equation 

gr( f ,  ,-.., f,,) = 021"'" #2, log (2.6) 
. . . 2 n = 0  

If f l  . . . .  f ,  = f,  we define also the truncated expectation o f f  of order n by 
the equation 

gr( f ;  n) = gr(f,..., f )  (2.7) 

L e t  ~N,A be the expectation with respect to the measure 
(Z  N) ~ e vJP(d(p ~u) and Ev u'x the corresponding truncated expectation. The 
correlation functions of the gas are given by the equation (3) 

. -  ~<N 
pN(~I ..... ~ . )  = X " ~  N'A :e'~,.,r : 

, (2.8) 

~, = (x,, ~i), xi E A, gi ~ { - 1, + 1 } 

One has a very simple expression also for the truncated correlation 
functions 

, -  ~ N  �9 ~<N 

"~ ~T ~.e i ....... e , .~ (2.9) 

This follows from Eq. (2.8) and the well-known fact that the right-hand 
side of Eq. (2.9) is equal to 

( - 1 )  ID' ' ( I D I - 1 ) '  1-I UV'A(U:eiae'~%~N:) (2.10) 
D e 6.@(1,...,n) y~D i~y \ / 

where ~(1,..., n) is the set of partitions of (1 ..... n) and ID[ denotes the num- 
ber of elements in D. 

For each N, coN(~I ..... ~,) and pU(~l ..... ~,) have a well-defined limit, as 
A .7 ~2, c0N(~I ..... ~,) and p N ( ~  1 ..... ~n), respectively. Also the pressure 

1 
pU(2)= lira v-zv,, l o g Z  u (2.11) 

IAI - 

is a meaningful expression. Furthermore all these functions are analytic 
around 2 = 0. All these results follow from the fact that the potential C ~  N is 
stable and regular. ~176 

The two-dimensional Yukawa gas is here defined as the limit of this 
system as N ~ or. In Refs. 1-3 it was shown that a similar limit (it was 
used a different ultraviolet cutoff) does exist if ~2< 4~ and has some nice 
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properties, described in the Introduction. If ~ 2 ~  4~ the system is not stable 
any more, but one can  s h o w  (4A1) that, if (~2 • 8~, one can recover at least 
the stability by doing in Eq. (2.2) the substitution 

M 1 
V~ ~ pu= V~_ ~l n (_~n)V. o~U(vX; 2n) (2.12) 

where g~(. ;  n) denotes the truncated expectation of order n with respect to 
the measure P(dq} <~N) and M>~ 1 depends on c~2(M~ oo as 42--* 8~). 

In the sequel we shall restrict ourselves to the case 

42 < 4~z (2.13) 

The main result will be the following one: 

T h e o r e m  1. If ~2<4~ there exists ,~o>0, depending on ~2, such 
that, if 121 < 2o, pU()~) converges, as N--* oo, to an analytic function p(2). 

This theorem will be proved in Sections 3 and 4. In Section 5 we shall 
discuss how to extend its proof in order to show the following: 

T h e o r e m  2. If (~2 <4~ there exists 2~ >0,  depending only on ~2, 
such that, if 121 < 2~, there exists the limit 

{o(~ ..... ~ , )=  lim coN(~,..., ~,) (2.14) 
N~oo 

3. THE EXPANSION FOR THE PRESSURE 

As in Ref. 4, we start from the decomposition of the field q}~N as  a 
sum of independent, identically distributed up to scale factors, Gaussian 
fields 

N 
~o~N=E~ ~o~ -~ (3.1) 

0 

~k ~o x is, by definition, the Gaussian field with covariance 

1 
Ck( x -  Y) = (-~)2 f dP eip(~'- 

It is easy to see that 

p2 72(k+1)+ p2 (3.2) 

~k(x) = ~~ 

C'~(0) = C'~ = log 
2~ 

(3.3) 

(3.4) 
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We define the "effective potential of order k" ~'k A in the following way: 

VkA(qo~k)=log f P(d(o~+l)e ~+1~~ O<.k<N (3.5) 

~'~(~0 ~x) = VA x (3.6) 

This definition is such that 

ZU=f p(dqo<~k)e ~, O<~k<<.N (3.7) 

We define also 

P A  l = log Z N = log f P(d(o ~ e ~(~~ (3.8) 

By applying the cumulant expansion to its right-hand side, Eq. (3.5) 
can be written in the following way: 

p~ 1 ~k + 1( ~-kA+ l; n) (3.9) 
1 n! r 

where ~kr(-; n ) denotes the truncated expectation of order k with respect to 
the measure P(dCpk). 

The expansion of the effective potentials and of the pressure that we 
shall study is obtained by iteration of Eq. (3.9). In the first step we apply 
Eq. (3.9) with k = N -  1. The step h consists in the application of Eq. (3.9) 
with k = N -  h and PkA+ 1 equal to the expansion obtained at the step h - 1. 
In order to describe the structure of the iterated expansion, we need to 
introduce some definitions. 

Def in i t ion .  A 0 cluster is a single particle i. An l cluster, l~> 1, is a 
family ~ = {c~1,..., c~t} of t >~2 m clusters, m ~< l - 1 ,  which contains at least 
one ( l - 1 )  cluster. We shall say that ~1,---, ~, are the components of c~. A 
particle i belongs to c~ ( ie  ~) i f  it belongs to one of its components. Let S(c~) 
be the set of particles belonging to ~ and I~1 the cardinality of S(c~). An 
l custer e = {0~ 1 ..... ~ t}  has also the property that S(O~r)C~ S(cts)= ~b if r vas. 

The 0 clusters are all equivalent, or of the same type. We shall say that 
two l clusters, l >/1, are equivalent, or of the same type, if they contain the 
same number of m clusters of the each type. Let C t be the set of all 
I clusters and Tt the set of all types. If c~ e CI, we shall denote by [~] the 
type of ~ and by I[c~]l the number of components of c~. 
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Given ~ =  {a~ ..... e,} and the integer h, O<~h<~N+ 1, we define a 
function _N,Z,h~ ~ t~, ..... ~,), depending on the positions and on the charges 
~ = (x,;, er of the particles i~ ,..., i, belonging to a, in the following way: 

aJv0~,~ )=2 ,  h<~N+ 1 (3.10) i l ' '  t~ii 

ax, t, htr 
. ~,,..., ~ )  = O, 

k [ O ] e  ~ ~ [# ] I / 
m<~l--1 

x kexp - 2 -  ~ ,<k- 
h r~-s  

x exp - ~- ~ U ~ Yr YS 
r,/-s T 

x G~'~'~+~(~, , 
~r 

if N - l + l < h ~ N + l , l > ~ l  

,) 

h ~ N - l + l , l > ~ l  

(3.11) 

where we denoted by N{r the number of clusters of type [fl] contained in 
~, by Yr the set S(e~), and by r r~ the coordinates of the particles in Y~. 
Furthermore we used the following definitions, valid for any family 

Y~,..., Y,} of mutually disjoints sets of particles: 

Iexp ( - 

Ukxr = ~ Ck(xi--xj)ei~j (3.12) 

j e Y  

k 

U ~  = ~h Uhxy (3.13) 
0 

r # s  T gc=cffCt ( r , s )~g  

(3.14) 

In Eq. (3.14) N~ denotes the family of all connected graphs with ver- 
uces {1 ..... n} and the pair (r, s), I ~r<s<~n ,  specifies a leg of the graph g. 

Remark. The l clusters here defined differ by the "trees" of Ref. 5 and 
the l vertices of Ref. 7 only because we sum over the "frequencies" of the 
components. 
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We claim that the iteration of Eq. (3.9) gives the following result: 
ov n- - I  

= o~' t~, , . . . ,  C )  
2 1 [ k ] e T !  " ~ [ A x { - - l , + l } ]  n 

I~t-n 

"- <~ " - l  < ~ h < ~ N  (3.15) x :exp la  i~.i@xi ., 
\ 1 / 

In Eq. (3.15) ~ d ~ = ~ e ~ d x  and q ~ - l - 0 ,  V A t = 2 2  IAI. 
Equation (3.15) can be proved very easily by induction, using 

Eqs. (2.3), (2.5), (3.9), and the following simple properties of the Gaussian 
field ~0 ~k: 

(1) :ei~'P~:= :e i ~ ' ~  ~:" :ei~~ (3.16) 

(2) 
dinates ~r i= (xr,, ~rl), i= 1,..., t, then 

~ ( : exp ( i~s r  1 . -<h. qg~, ).) qoF~ ) ..... , :exp(iSer," -<h . 

= :exp i~ i r~r~ :exp - ~ -  
1 

x exp - ~ ~ U h 
Yr YS 

r ~ s  T 

where we used the notation 
~<h ~<h ~y'(O r = ~ ~iCPxj 

i ~ Y  

If Y1,..., Y, are mutually disjoint families of particles of coor- 

-<h-- I t U~rrs 
r ~ x  

(3.17) 

(3.18) 

4. PROOF OF T H E O R E M  1 

Equations (2.11), (3.8), and (3.15)imply that 

P N ( 2 ) = 2 2 + Z  n E e E lira 1 
2 1 [~]~Te A/ 'e2 IA[ 

I~t = n  

• f[ d ~ l ' "  ds ~ N I O I Y -  
A x { - - l , + l } ]  n 

(4.1) 

The main point in the proof of Theorem 1 will be of course a bound of 
the series in the right-hand side of Eq. (4.1), which is uniform in N. We 
define 

f [  -2 -~h 1 N l h  d~l " d ~ 5 ( x i ) e  ~ US(~) N l h  [ta~" [l = ~2x{ 1,+~}~, "" [a~', (~,..., ~,)[ (4.2) 
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where i ~ c~ is arbitrarily choosen (the result is independent of i) and 

We can then write 

Uv-<'h-2- 1 F, e~ejC ~<h(x~-xj) 
i,je Y 

n 1 

pN(2)<~22+~n ~ e Y" II~N'"011 
2 1 [~] E 7" l 

I~l = n  

(4.3) 

(4.4) 

Equation (3.11) suggests an iterative procedure for the estimation of 
[]o-~.l.hll. We shall obtain the bound by using the tree formula (7'1z'~3) in the 
right-hand side of Eq. (3.14). Let us then recall some definitions. 

De f in i t i on .  A tree graph of order t is a mapping q from {2,..., t} 
into { 1,..., t - 1 }, such that r/(i) < i. The elements of { 1,..., t} are the vertices 
of q. The legs of t/ are the couples (t/(i), i). A partial ordering on the ver- 
tices is defined by saying that i follows r/(i). To each tree we associate a 
function on [0, 1 ] t -  1 

Up?(S1 ..... S t  1) = [~I Srl(i)Sq(i)+l " "  S i  2 (4.5) 
i=2 

where empty products should be read as 1. 

It is possible to show (see for example Ref. 7) that 

(4.6) 

1 
tSE H ge~et (r,s)~ g 

(e-a2~Ym - 1)=  (_82) t -1  f dSl "'" dS,_ 1 
t [o, ly-~ 

r/ = 

X e--~2WkyI" Yt (SI'''''St-I) 

where ~ indicates the symmetrization with respect to YI ..... Yt and 

W k y I " Y t  ( S l ' ' ' ' ' S t  1 ) =  E S r S r w l ' " S s  1 u k  - Yr Ys 
l<~r<s<~t 

Equation 
estimate: 

(4.7) 

(4.6) is useful because we have the following stability 

-• w~...y,(Sl ..... s ,  1)~> rS~r 
1 

where 8~r is defined as in Eq. (4.3), with (~k in place of C ~k. 

(4.8) 
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In order to prove (4.8), we proceed as in Ref. 13. If Wr is an 
expression of the form 

we define, for any Y1 c Y. 

Then we define 

~ =  o~, 

W y =  ~ v,j (4.9) 
i , j e  Y 

Wy.r,= Z vo+ Z v~j (4.10) 
i , j ~  YI  i , j e  Y / Y I  

W/y=(1-Si) [~/-i 1 _ t _ S i ~ - ,  ' Y, Y i t J  -- c9 Yi 

It is easy to show that 

Y = Y 1 u Y 2 w ' "  u Y t  
(4.11) 

i = 1  ..... t - - i  

Moreover, since U~.~>0, for any set Y of particles, Eqs. (4.10) and (4.11) 
easily imply, by induction, that 

l~r  ~> 0, i =  1,..., t -  I (4.13) 

Equation (4.8) follows from Eqs. (4.12) and (4.13). 
Let us now observe that, if k>~h and Y= Ut~=~ Y~ 

- - ~ < h - - 1  1 t 

V Yr Ys Yr 
r ~ s 1 

: - -  U y  "~- r Ur, rU Z 
1 1 

(4.14) 

then, if we insert Eq. (4.6) in Eq. (3.11), we obtain, using Eqs. (4.8) and 
(4.14), 

-2-~h-1 ~ e~2-~.kgs(~r) laN, m,,k+l(~rr)l Co: US(:O N l h Io-~<,. (~,,. . . ,  ~,,)1 ~<s?~< k <<, 

1 

~ 2 ( t  - -  1 ) 

• Zs ts, ..... s ,  f I  t 1 
i"/ r = 2  

j ~ ~tr 

ff'tr- a ~ L Ok (4.12) =Wr, . . .y , (Sl  ..... S, t )+  r r, 
1 
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where 

t~ 
g'~ = (4.16) 

I~[fl]~Tm, m<~l 1 N~l! 

We now insert Eq. (4.15) in Eq. (4.2) and we perform one integration 
for each leg of ~/, in an order suggested by the partial ordering of the tree, 
starting from the maximal vertices, and in a way depending on the choice 
of i e ~,(~) and j e er. To be more precise, for any choice of q, i s 0~r/(r ) and 
jE  c~r [-which selects one term in the right-hand side of Eq. (4.15)], we per- 
form the integration with respect to xj. Translation invariance and 
independence of definition (4.2) of i allow us to show that 

N ] 
Nlh ~h Nmrk+lH O~2(t 1) 

l i a r"  II~<g~ k t [[0- r' ' 
1 

• f dSI""dS,_J~(S1 ..... S,_~) 
EO, l y  I 

(4.17) 

The sum over r/ in Eq. (4.17) can be done using the tree estimate (7'12) 

i f  ,1 1%[ dSl""dSt  lf~(S1 ..... S t - l )  <~ I-[ [~r+Xl el~'rl (4.18) 
r = l  

Moreover, 

(4.19) 

Then we have 

N 
I(TNlh < K ~ k  N'mr'k+ I ~" II I1~=, 111 I~rl e I~~ 

h 1 

E~:(1 - 1 / ~ ? ) l ' - '  X y--2k(t 1) 

t 
(4.20) 

If c~ 2 < 4~, Eq. (4.20) easily implies by induction that 

[[crNZh[[,, ~ I~ [ I~1K~yl -h[2([~[ 1)(~2/4rc)]c~l] (4.21) 
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where K;~ are constants inductively defined by 

& = 2  

K~=R~ Km'e 2J~"r [42(72- 1)]~ 1 

X ~ k ~ )  (k + l)[2(tc~[ 1 ) - (ff2/4~z)lc~] ] 

0 

It is sufficient to observe that, by Eqs. (3.4), (4.2), (4.3), 

liG,~.~ I).1 ]g(c@47t)h 

and to insert Eq. (4.21) in the right-hand side of Eq. (4.20). 
Equations (4.4) and (4.21) imply that 

(4.22) 

(4.23) 

oo n - - I  

PN(2)~<2121+~n ~ l ~ ]21 r~lK~ 
2 1 [~ ]  ~ T I 

[~j = n  

(4.24) 

and we are left with the problem of showing that the series in the right- 
hand side of Eq. (4.24) is convergent, if 121 is small enough. 

Equations (4.16) and (4.22) imply that, if l~> 1 

K;~ <~ A t! B t -  I 
1-I[~3~r,,,,,,~; 1N~3v. t ~=1 [K~ '6  I~rl] (4.25) 

where 

A = 7 2 ~ iY - - i (2  ~2/2rr) 

0 

B = 4 2 ( y  2 - -  l ) 

= e27 I2-~2/4~I 

(4.26) 

Suppose 7 is so large that 

3 ~< 1 (4.27) 

This is not really a restriction since lim N ~ o~ PN(2) is clearly independent of 
7, if it exists. Then Eq. (4.25) becomes 

t! B' l ~ K mr (4.28) 
I ~ [ f l ] ~ T m ,  m<. l  1 N[r 3. t r = l  
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Let us now define 

[c~] �9 r l 
I [~ ] l= t  

,o',, 
2 

r t21 ~ = 2  121 

Then we can write Eq. (4.24) in the form 

l~>1, t>~2 

l~>1 

(4.29) 

(4.30) 

(4.31) 

PN(2) ~ < 2  I~.1 +~ :~' (4.32) 
1 

Equations (4.28) and (4.29) imply that 

B t -  1 t!  ~ l  
tfl,-~A--:-< ~ ~ I 11 [K~ m' I;.I ~r~] (4.33) 

I [ ~ ] l = t  

Since any l cluster contains at least one ( l -  1) cluster, we have 

0 ' , ~ < A - -  ~ ]21'~lK m _ 12t'kiK m 

m <~ l 1 rn <~ l 2 

l 1 ) t - 1  
<~AB' 1r ~ cm (4.34) 

", 0 

where we used the inequality 

Therefore, if 1>~ 1 

( a + b )  r - b ' ~ a t ( a + b )  ~ i 

~ l  z l 1--1 

2 1 0 

Suppose 2 so small that 

4AB~~ 8 [21AB<~�88 

Then it is easy to show by induction that 

i t ~< ~~176 l >~ 0 

(4.35) 

(4.36) 

(4.37) 

(4.38) 
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Equations (4.32), (4.37), and (4.38) immediately imply that pN(2) is 
uniformly bounded in N, if 2 satisfies Eq. (4.37). 

Theorem 1 is now a trivial consequence of dominated Lebesgue 
theorem. The function p(2) is defined like pU(2) [see Eq. (4.1)] with a~  ,z,~ 
in place of _N,t.0 a~,t.h is defined inductively by Eqs. (3.10), (3.11) with t3c~ . 

N = o o .  

5. T H E  C O R R E L A T I O N  F U N C T I O N S  

The proof of Theorem 2 is essentially the same as the proof of 
Theorem 1. By Eqs. (2.6) and (2.9) 

where 

~o~(~,..., (~) 
,, 

1og[2U((l ..... (,)/Z]]]~., . . . . .  x,,=0 (5.1) 

ZAU((1 ,..., 4,) = f P(d~o <~N) exp VA N + ~ i2, :e'~'~~ 
1 

(5.2) 

One can write an expansion for log Z - , N ( ~ I , . . .  , ( n )  analogous to the 
expansion of log Z N [see Eq. (3.15)]. The only difference is that now there 
are n + 1 different 0 clusters, associated to the n + 1 different terms in the 
exponential of Eq. (5.2). 

Of course all terms present in the expansion of log Z~ appear also in 
the expansion of log Z N. Then log -N N Z A / Z  A contains only terms bounded as 
IA[ ~ 0% uniformly in N, and one can very easily extend the arguments in 
Section 4 in order to show that log ~~ N Z A / Z  A and its derivatives with respect 
to 2, 2~,..., 2n converge, as N--* 0% if I,~[ and 12i[, i =  1,...,n, are small 
enough, to a limit which is analytic in 2, 21 ..... )~,. 

Theorem 2 follows immediately from these considerations and 
Eq. (5.1). Also the exponential clustering is an evident property of the 
expansion. 
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